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Abstract. Saito and Ueda [Phys. Rev. A 59, 3959 (1999)] studied atomic and radiation squeezing in
interaction of a single mode coherent state |α〉 of radiation with two excited two-level atoms, using the
Jaynes Cummings Hamiltonian. They considered α real and studied squeezing of the Dicke operator Sx

using the Kitagawa-Ueda criterion for squeezing and coupling times less than or nearly equal to |α|−1. We
obtain results to all orders in coupling time for atoms, which are initially in (i) fully excited, (ii) superradiant
or in (iii) ground states and obtain more general results. We use our recently reported criterion for atomic
squeezing, of which the Kitagawa-Ueda criterion is a special case, and obtain a much stronger (nearly 95%)
atomic squeezing than that (nearly 1.1%) reported by Saito and Ueda.

PACS. 42.50.Dv Nonclassical states of the electromagnetic field, including entangled photon states; quan-
tum state engineering and measurements

QICS. 15.10.-p Quantum optics: Physical qubits

1 Introduction

Squeezed radiation states in quantum optics are distin-
guished by the property that the quantum fluctuations
in one of the field quadratures are less than those asso-
ciated with coherent light or vacuum [1,2]. Earlier [3,4],
squeezing was largely of academic interest because of this
quantum feature. But now, it is realized that squeezing
can not only help to increase signal to noise ratio in one
quadrature component [1,5] but also in optical communi-
cation [6], gravitational wave detection [7] and in the field
of quantum information [8]. Quantum mechanical correla-
tion between photons established through non-linear inter-
action play an essential role in the generation of squeezed
states of light. The generation of squeezed states has
been predicted in a number of non-linear optical systems.
Among them are multi photon amplifier [4], paramet-
ric amplifier [3,9], resonance fluorescence [10], four-wave
mixing [2,5] and interaction of two and three level sys-
tems [11,12] with a coherent field in Jaynes and Cummings
model.

In analogy to squeezing of light [1,2], squeezing
of spin components has been defined by several au-
thors [10,13–19]. The earliest definition of atomic squeez-
ing is due to Walls and Zoller [10], who wrote the condition
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for squeezing in Sx and Sy component in the forms
〈(∆Sx)2〉 < |〈Sz〉|/2 and 〈(∆Sy)2〉 < |〈Sz〉|/2 respec-
tively. These definitions have been used by several au-
thors [13,14]. Later several authors gave alternate defi-
nitions of atomic squeezing, in the form ξ < 1, where ξ,
the squeezing parameter or factor, has been defined dif-
ferently by different set of authors. Wineland et al. [15],
who studied resolution in spectroscopic experiments on N
two-level atoms, defined atomic squeezing for spin com-
ponents in a plane normal to mean spin and wrote, ξ =
(2S)1/2〈(∆S⊥)〉/|〈S̄〉|, where ∆S⊥ denotes the smallest
uncertainty of a spin component perpendicular to mean
spin vector S̄. This gives a measure of the quantum noise
in a direction perpendicular to the mean value of the to-
tal spin. Kitagawa and Ueda [16] also defined squeezing
of spin components normal to mean spin and wrote the
squeezing parameter as, ξ = 〈(∆S⊥)〉/|〈S̄〉/2|1/2. This def-
inition was also used by Saito and Ueda [17]. Sorensen
et al. [18] proposed the parameter for defining the atomic
squeezing, ξ =

√
N〈(∆Sx)2〉/〈Sy〉2 + 〈Sz〉2.

Walls and Zoller [10], Saito and Ueda [17], Wang and
Sanders [19] have shown that squeezing of quadrature am-
plitude qθ = (ae−iθ + a+eiθ)/

√
2 depends on squeezing of

spin component Sθ+π/2 ≡ −Sx sin θ + Sy cos θ. Spin com-
ponents in the x–y-plane control radiation squeezing and
assume more significance than other spin component. As
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a consequence, one should study the squeezing of all spin
components in the x–y-plane and not only that which is
perpendicular to the mean spin 〈S〉, as has been done
by Wineland et al. [15], Kitagawa and Ueda [16] and
Saito and Ueda [17]. A generalization of the definition of
atomic squeezing so as to define squeezing of all spin com-
ponents is necessary and has been done recently by the
authors [20].

The present authors defined recently the squeezing
parameter [20] for components in the x–y-plane as, Sθ =
2〈(∆Sθ)2〉/[〈Sθ+π/2〉2 + 〈Sz〉2]1/2 where, Sθ = Sx cos θ +
Sy sin θ. This is a natural generalization of the earli-
est and simplest definition of Walls and Zoller [10] and
the Kitagawa-Ueda definition is a special case of this
definition when direction of mean spin is perpendicular
to θ-direction. Saito and Ueda [17] used the definition
of Kitagawa and Ueda [16] to study extensively atomic
squeezing in interaction of a system of two excited two-
level atoms with a single coherent mode of radiation. We
also study the same interaction but with (i) atoms fully
excited, (ii) superradiant or in (ii) ground state and find
more extensive results, of which some of the Saito-Ueda re-
sults are subsets. Also, we report much stronger (∼95%)
atomic squeezing as compared to the Saito-Ueda result
(∼1.1%). The experimental detection has been discussed
by Saito-Ueda [17] and Polzik [21] in detail and we do not
want to add anything to it.

2 The exact time evolution operator

Consider a system of two two-level atoms interacting with
a single resonant mode of radiation with zero detuning. If
the atoms are located in a region small in comparison with
the wavelength of the field, but not so small so as to make
them interact directly with each other, the Hamiltonian of
the system is given in the natural system of units (� = 1)
and the dipole and rotating wave approximations by [22]

H = H0 +HI , H0 = HF +HA, HF = ωa+a,

HA = ωSz, HI = g(aS+ + a+S−). (1)

Here, subscripts F , A, and I refer to field, atoms and in-
teraction, g is coupling constant and S±,z are the Dicke’s
collective atom operators [23]. Similar Hamiltonian for a
single two-level atom and single mode radiation was solved
exactly independently by Stenholm [24] and Prakash,
Chandra and Vachaspati [25].

If |u〉i and |l〉i are the interacting upper and lower en-
ergy states of the ith (i = 1, 2) two-level atoms,

S± =
∑

i=1,2

S±i; (2a)

Sz =
∑

i=1,2

Szi; (2b)

S± ≡ Sx ± iSy, (2c)

S+i = |u〉i i〈l|; (3a)
S−i = |l〉i i〈u|; (3b)

Sz = 1
2 [|u〉i i〈u| − |l〉i i〈l|]. (3c)

S± and Sz satisfy the commutation relations,

[S+, S−] = 2Sz, [Sz, S±] = ±S±. (4)

In the truncated Hilbert space, the atomic system is de-
scribed by the eigenstate |j,m〉 defined by,

S2 |j,m〉 = j(j + 1) |j,m〉 ; Sz |j,m〉 = m |j,m〉 ;

S2 =
1
2

[S+S− + S−S+] + S2
z . (5)

For a system of two two-level atoms, j = 1, with m = 1,
0, −1 and j = 0, with m = 0. These states have the prop-
erty, S±|j,m〉 =

√
(j ∓m)(j ±m+ 1)|j,m± 1〉. Since

[S2, H ] = 0, quantum number j does not change in in-
teraction. The j = 0 state, |0, 0〉, does not interact as
S±|0, 0〉 = 0 giving HI |0, 0〉 = 0. If j = 1 initially, we
have to consider states |1, 1〉, |1, 0〉 and |1,−1〉 only. In
the interaction picture, the interaction Hamiltonian can
be written as

HI =
√

2 gF, F =

⎛

⎝
0 a 0
a+ 0 a
0 a+ 0

⎞

⎠ . (6)

As explained in reference [20], this leads exactly to the
time evolution operator,

UI = exp(−iHIt)

=

⎛

⎜
⎜
⎝

1+(N+1)C(N+1) −iS(N+1)a C(N+1)a2

−ia+S(N+1) cos(gt
√

4N+2) −iS(N)a

a+2C(N+1) −ia+S(N) 1+NC(N−1)

⎞

⎟
⎟
⎠ ,

(7)

where, N = a+a is the number operator and

C(N) ≡ {cos(gt
√

4N + 2) − 1}/(2N + 1);

S(N) ≡ {sin(gt
√

4N + 2)}/√2N + 1. (8)

3 Atomic squeezing in interaction
of two two-level atoms with a single mode
coherent radiation

Instead of considering squeezing of spin components Sx

and Sy separately, let us consider a more general operator,

Sθ = Sx cos θ + Sy sin θ. (9)

Commutation relation [Sθ, Sθ+π/2] = iSz gives

〈(∆Sθ)2〉〈(∆Sθ+π/2)2〉 � 1
4
|〈Sz〉|2. (10)
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Commutation relations [Sθ, Sθ+π/2] = iSz and [Sθ, Sz] =
−iSθ+π/2, indicate squeezing for Sθ, if 〈(∆Sθ)2〉 <

|〈Sz〉/2| or 〈(∆Sθ)2〉 < |〈Sθ+π/2〉/2|. We can obtain the
most general criterion for squeezing of the operator Sθ by
considering, in place of the triad of operators, (Sθ, Sθ+π/2

and Sz), the triad, (Sθ, Sθ+π/2,φ and Sθ+π/2,φ+π/2) with

Sθ+π/2,φ ≡ Sθ+π/2 cosφ+ Sz sinφ,

Sθ+π/2,φ+π/2 ≡ −Sθ+π/2 sinφ+ Sz cosφ, (11)

and an arbitrary φ. These operators give [Sθ, Sθ+π/2,φ] =
iSθ+π/2,φ+π/2, [Sθ, Sθ+π/2,φ+π/2] = −iSθ+π/2,φ and there-
fore the uncertainty relations,

〈(∆Sθ)2〉〈(∆Sθ+π/2,φ)2〉 � 1
4
|〈Sθ+π/2,φ+π/2〉|2,

(12a)

〈(∆Sθ)2〉〈(∆Sθ+π/2,φ+π/2)2〉 � 1
4
|〈Sθ+π/2,φ〉|2. (12b)

One may call Sθ squeezed if

〈(∆Sθ)2〉 < 1
2
|〈Sθ+π/2,φ+π/2〉|

and/or 〈(∆Sθ)2〉 < 1
2
|〈Sθ+π/2,φ〉|. (13)

Equation (11) shows that the values of |〈Sθ+π/2,φ〉| and
|〈Sθ+π/2,φ+π/2〉|, as φ is varied, lies between 0 and
[〈Sz〉2 + 〈Sθ+π/2〉2]1/2. The most general criterion for
squeezing is, therefore,

〈
(∆Sθ)2

〉
<

1
2

[
〈Sz〉2 +

〈
Sθ+π/2

〉2
]1/2

, (14)

because, if this relation holds, then one can always find
separate intervals for φ for holding of the two equa-
tions (13). In case these two intervals for φ overlap, in
the region of overlap, both of equations (13) are satisfied
and both components, Sθ and Sθ+π/2 are squeezed [20].

It should be noted that Saito and Ueda [17] define the
component of S [26] normal to mean spin vector 〈S〉 as
S(n̂, χ) ≡ exp(−iχS · n̂)(S · m̂) exp(iχS · n̂), where n̂ =
〈S〉/|〈S〉|, m̂ = n̂× êz/|n̂× êz| and χ is the angle mea-
sured in the plane normal to n̂ measured from m̂. They
consider commutation relation [S(n̂, χ), S(n̂, χ+ 1

2π)] =
i(S · n̂), and write the uncertainty relation as [27]

〈[∆S(n̂, χ)]2〉〈[∆S(n̂, χ+ π/2)]2〉 � 1
4
|〈S〉|2, (15)

since |〈S〉| = |〈S · n̂〉| in this case, and use the criterion
for squeezing, SSU < 1, with

SSU = 〈[∆S(n̂, χ)]2〉/1
2
|〈S〉|. (16)

It may be noted that if α = |α|eiθα , using ||α|eiθα〉 =
eiθαN ||α|〉, we have

〈f(Sθ)〉 ≡ 〈α|〈1, 1|eiHI tf(Sθ)e−iHI t|1, 1〉|α〉
= 〈α|〈1, 1|eiHI te−iθ(Sz+N)f(Sx)eiθ(Sz+N)

× e−iHI t|1, 1〉|α〉
= 〈|α|ei(θ+θα)|〈1, 1|eiHItf(Sx)

× e−iHI t|1, 1〉||α|ei(θ+θα)〉, (17)

a function of |θ + θα|. Hence results for the operator Sθ

with a given value of θ say, θ = 0 (i.e. Sθ = Sx) but with
an arbitrary value of θα can give the corresponding results
for all values of θ and of θα.

For qθ = (ae−iθ + a+eiθ)/
√

2, pθ = (ae−iθ −
a+eiθ)/(

√
2i) the interaction Hamiltonian can be written

as HI =
√

2g(qθSθ + pθSθ+π/2). Squeezing of quadra-
ture component qθ depends on atomic squeezing of
Sθ+π/2 [10,17]. Hence it is important to know the value of
θ for which Sθ is maximum squeezed for knowing the max-
imum squeezed quadrature component of radiation. To
discuss squeezing, therefore, one may fixed θα and study
variation of results with θ (as has been done here or by
Saito and Ueda who took θα = 0) or fix θ and study vari-
ations with θα.

3.1 Case (i): both atoms are excited, initially

If both atoms are excited and radiation is in the coherent
state |α〉 initially, the initial state is |α〉|1, 1〉, and the final
state is then obtained using equation (7) in the form,

|ψ〉 = [1 + (N + 1)C(N + 1)]|α〉|1, 1〉
− ia+S(N + 1)|α〉|1, 0〉 + a+2C(N + 1)|α〉|1,−1〉. (18)

Direct results using equations (17) and (18) are,

〈Sθ〉 =
√

2|α| sin(θ + θα)(P1 − P2), (19)

〈Sθ+π/2〉 =
√

2|α| cos(θ + θα)(P1 − P2), (20)

〈Sz〉 = Q1 −Q2, (21)

〈S2
θ 〉 =

1
2

+
1
2
R1 + |α|2 cos 2(θ + θα)R2, (22)

where,

P1 = 〈α|(N + 2)S(N + 2)C(N + 1)|α〉,
P2 = 〈α|[1 + (N + 2)C(N + 2)]S(N + 1)|α〉,
Q1 = 〈α|[1 + (N + 1)C(N + 1)]2|α〉,
Q2 = 〈α|C(N + 1)a2a+2C(N + 1)|α〉,
R1 = 〈α|[S(N + 1)]2(N + 1)|α〉,
R2 = 〈α|[1 + (N + 3)C(N + 3)]C(N + 1)|α〉

and C(N) and S(N) are as defined by equations (8).



478 The European Physical Journal D

3.2 Case (ii): atoms are in superradiant state, initially

If atomic assembly is in the super-radiant state |1, 0〉 and
radiation is in the coherent state |α〉 initially, the initial
state is |α〉|1, 0〉, and the final state is then obtained using
equation (7) in the form,

|ψ〉 = −iS(N + 1)a|α〉|1, 1〉 + cos(gt
√

4N + 2)|α〉|1, 0〉
− ia+S(N)|α〉|1,−1〉. (23)

Our direct results using equations (17) and (23) are,

〈Sθ〉 =
√

2|α|sin(θ + θα)(P 1−P 2), (24)

〈Sθ+π/2〉 =
√

2|α|cos(θ + θα)(P 1−P 2), (25)

〈Sz〉 = Q1 −Q2, (26)

〈S2
θ 〉 =

1
2

+
1
2
R1 + |α|2cos 2(θ + θα)R2 (27)

but with,

P1 = 〈α|[S(N + 1) cos(gt
√

4N + 2)|α〉,
P2 = 〈α| cos(gt

√
4N + 6)S(N)|α〉,

Q1 = |α|2〈α|[S(N + 1)]2|α〉,
Q2 = 〈α|S(N)(N + 1)S(N)|α〉,
R1 = 〈α|[cos(gt

√
4N + 2)]2|α〉,

R2 = 〈α|S(N + 2)S(N)|α〉.

3.3 Case (iii): atoms are in ground state, initially

If both atoms are in ground state and radiation is in the
coherent state |α〉 initially, the initial state is |α〉|1,−1〉,
and the final state is then obtained using equation (7) in
the form,

|ψ〉 = C(N + 1)a2|α〉|1,1〉 − iS(N)a|α〉|1,0〉
+ [1 +NC(N − 1)]|α〉|1,− 1〉. (28)

Direct results using equations (17) and (28) are,

〈Sθ〉 =
√

2|α|sin(θ + θα)(P 1 − P2), (29)

〈Sθ+π/2〉 =
√

2|α|cos(θ + θα)(P 1−P 2), (30)

〈Sz〉 = Q1 −Q2, (31)

〈S2
θ 〉 =

1
2

+
1
2
|α|2R1 + |α|2cos 2(θ + θα)R2, (32)

but with,

P1 = 〈α|[1 +NC(N − 1)]S(N)|α〉,
P2 = |α|2〈α|C(N + 1)S(N)|α〉,
Q1 = |α|4〈α|[C(N + 1)]2|α〉,
Q2 = 〈α|[1 +NC(N − 1)]2|α〉,
R1 = 〈α|[S(N)]2|α〉,
R2 = 〈α|[1 +NC(N − 1)]C(N + 1)|α〉.

4 Discussion of atomic squeezing

Using equation (14), we define the squeezing factor Sθ, by
writing

Sθ ≡ 〈
(∆Sθ)2

〉
/
1
2

[
〈Sz〉2 +

〈
Sθ+π/2

〉2
]1/2

, (33)

which is a function of |θ + θα|, |α| and gt. This gives
atomic squeezing for a general spin component Sθ, when-
ever Sθ < 1. The Kitagawa Ueda definition equation (16)
used by Saito and Ueda [17] is a special case of this def-
inition, when their unit vector n̂ along the direction of
mean spin is perpendicular to the θ-direction. For this
case, 〈Sθ〉 = 0, |〈S〉| =

√〈Sθ+π/2〉2 + 〈Sz〉2, and the defi-
nition equation (16) for atomic squeezing becomes identi-
cal with our definition equation (33).

Saito and Ueda considered α real (i.e. θα = 0). Since,
〈Sy〉 = 0 for this case (see Eq. (20) which gives 〈Sθ+π/2〉 =
0 for θ = π/2), the mean spin vector 〈S〉 is in the y–z-
plane. This induced the authors to consider squeezing of
Sx only, as this is the transverse spin component coupled
to radiation operators [10,17] which is also perpendicular
to 〈S〉. They considered the case |α| = 10 and gt from
0.0 to 0.6 and reported minimum squeezing factor 0.989
(i.e. about 1.1% squeezing) at gt = 0.22. We repeated
this, extending the ranges of gt (0 to 2) and |α| (0 to 27),
and obtained the minimum squeezing factor Sθ = 0.6945
(about 30% squeezing) at θ = −θα or −θα + π, |α| = 1.45
and gt = 1.22.

When we varied even θ+θα (i.e. when we dropped the
Kitagawa-Ueda restrictions that squeezing of only spin
components perpendicular to mean atomic spin will be
considered) and considered all spin components, we find
the minimum squeezing factor Sθ = 0.09612 (i.e. nearly
90% squeezing) at θ = −θα ± π/2, gt = 0.029 and
|α| = 26.247. In the Saito-Ueda notations (θα = 0) this
corresponds to squeezing of Sy which is not perpendicular
to mean atomic spin. We study variation of Sθ with gt and
|α| near this minimum and results are given in Figures 1
and 2 respectively.

In Figure 1 we see that Sθ has two close minima at
gt = 0.02900 and 0.03083 and a spike in between. The
reason for this behaviour is that 〈Sz〉 passes through a
zero at gt ∼= 0.02990 due to Rabi oscillations and 〈(∆Sθ)2〉
also passes through a minimum value 0.001197 at gt =
0.02988. Consequently Sθ ≡ 〈(∆Sθ)2〉/ 1

2 |〈Sz〉| (note that
〈Sθ+π/2〉 = 0) shows two minima, a lower one equal to
0.0.096121 at gt = 0.02900 and a relatively higher one
equal to 0.099807 at gt = 0.03083, and a spike running to
∞ in between. The lower one is the absolute minimum.
Note that a similar behaviour is seen near the next spike
at gt = 0.0897 where 〈Sz〉 passes through second zero
because of the Rabi oscillations.

It may noted that for the absolute minima of Sθ re-
ported here mean spin vector is 〈S〉 = 0.0474êz−0.9972êθ,
where êθ is unit vector in θ direction (êy for the Saito–
Ueda case) and the angle between the mean spin vector
and the θ direction is nearly cos−1(0.9983) = 3◦20′29′′.

If the initial atomic state is the superradiant state
|1, 0〉, our numerical results show that the minimum value
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Fig. 1. Variation of squeezing factor with gt for |α| = 26.247
and θ + θα = ±π/2 for atoms in the state |1, 1〉 initially. The
value of squeezing factor is >1.2 in a small regions near gt =
0.03083 and 0.0897.

Fig. 2. Variation of squeezing factor with |α| for gt = 0.029
and θ + θα = ±π/2 for atoms in the state |1, 1〉 initially.

of Sθ is equal to 0.77597 at θ+ θα = ±π/2, gt = 1.09 and
|α| = 0.612. This gives about 22% squeezing. Variation
of Sθ near this minimum value with the three indepen-
dent variables gt, θ+θα, and |α| are shown in Figures 3, 4
and 5 respectively. Even this squeezing is higher than that
reported by Saito and Ueda but smaller than those ob-
tained by us for the initial states |1,±1〉 of the atoms. For
this case, mean spin vector 〈S〉 = −0.7062êz + 0.6267êθ

and makes angle cos−1(0.6637) = 48◦24′48′′ with the θ
direction

For the initial state with the two atoms in the ground
state, we obtain minimum value of Sθ equal to 0.050214
at θ + θα = ±π/2, gt = 0.071 and |α| = 10.899. Variation
of Sθ near this minimum value with the three independent

Fig. 3. Variation of squeezing factor with gt for |α| = 0.612
and θ + θα = ±π/2 for atoms in the state |1, 0〉 initially.

Fig. 4. Variation of squeezing factor with θ+θα for |α| = 0.612
and gt = 1.09 for atoms in the state |1, 0〉 initially.

variables gt, θ+θα, and |α| are shown in Figures 6, 7 and 8
respectively. It should be noted that this is the largest
squeezing (nearly 95% squeezing) that we get. A further
advantage of using the state |1,−1〉 over the state |1, 1〉 is
that no effort in preparation of the initial state of atomic
assembly is required.

It should be noted that mean spin vector in this
case 〈S〉 = −0.02585êz + 0.9993êθ and makes angle
cos−1(0.9996) = 1◦28′59′′ with the θ direction. The reason
behind occurrence of absolute minima at gt = 0.071 and a
near minima at gt = 0.0734 and the spike at gt = 0.07219
is occurrence of the minimum value 0.000344 of 〈(∆Sθ)2〉
at gt = 0.07217 and a zero of 〈Sz〉 due to Rabi phe-
nomenon at gt = 0.07219.

Usually [2,10,13] when one refers to atomic squeez-
ing, one has in mind the relation [Sx, Sy] = iSz and
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Fig. 5. Variation of squeezing factor with |α| for gt = 1.09
and θ + θα = ±π/2 for atoms in the state |1, 0〉 initially.

Fig. 6. Variation of squeezing factor with gt for |α| = 10.899
and θ + θα = ±π/2 for atoms in the state |1,−1〉 initially.

〈(∆Sx)2〉〈(∆Sy)2〉 � 1
4 |〈Sz〉|2, and therefore only one of

the two orthogonal components Sx and Sy has variance
less than 1

2 |〈Sz〉| and is regarded squeezed. However, if
one uses, the more general definition equation (14) for
squeezing orthogonal components Sθ and Sθ+π/2 may be
regarded squeezed simultaneously in the general sense (i.e.
with different sets of triads of operators) and not in the

Fig. 7. Variation of squeezing factor with θ + θα for |α| =
10.899 and gt = 0.071 for atoms in the state |1,−1〉 initially.

Fig. 8. Variation of squeezing factor with |α| for gt = 0.071
and θ + θα = ±π/2 for atoms in the state |1,−1〉 initially.

usual sense (i.e. with the same triad), if [20]

〈
(∆Sθ)2

〉
<

1
2

√(
〈Sz〉2 +

〈
Sθ+π/2

〉2
)
;

〈
(∆Sθ+π/2)2

〉
<

1
2

√(
〈Sz〉2 + 〈Sθ〉2

)
.

In Figure 7, we note another case where, all possible pairs
of orthogonal components, Sθ and Sθ+π/2 are squeezed,
except those for which θ+θα = 0, ±π/2, ±π and for these
one component is squeezed but the other has Sθ = 1. An-
other example of this kind was reported by us earlier [20].
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